Mechanistic features of CAG•CTG repeat contractions in cultured cells revealed by a novel genetic assay

نویسندگان

  • Richard Pelletier
  • Brian T. Farrell
  • Juan José Miret
  • Robert S. Lahue
چکیده

Trinucleotide repeats (TNRs) undergo high frequency mutagenesis to cause at least 15 neurodegenerative diseases. To understand better the molecular mechanisms of TNR instability in cultured cells, a new genetic assay was created using a shuttle vector. The shuttle vector contains a promoter-TNR-reporter gene construct whose expression is dependent on TNR length. The vector harbors the SV40 ori and large T antigen gene, allowing portability between primate cell lines. The shuttle vector is propagated in cultured cells, then recovered and analyzed in yeast using selection for reporter gene expression. We show that (CAG*CTG)25-33 contracts at frequencies as high as 1% in 293T and 293 human cells and in COS-1 monkey cells, provided that the plasmid undergoes replication. Hairpin-forming capacity of the repeat sequence stimulated contractions. Evidence for a threshold was observed between 25 and 33 repeats in COS-1 cells, where contraction frequencies increased sharply (up 720%) over a narrow range of repeat lengths. Expression of the mismatch repair protein Mlh1 does not correlate with repeat instability, suggesting contractions are independent of mismatch repair in our system. Together, these findings recapitulate certain features of human genetics and therefore establish a novel cell culture system to help provide new mechanistic insights into CAG*CTG repeat instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.

Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechan...

متن کامل

Bidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats.

More than 12 neurogenetic disorders are caused by unstable expansions of (CTG)•(CAG) repeats. The expanded repeats are unstable in germline and somatic cells, with potential consequences for disease severity. Previous studies have shown that contractions of (CAG)(95) are more frequent when the repeat tract is transcribed. Here we determined whether transcription can promote repeat expansion, us...

متن کامل

Highly Specific Contractions of a Single CAG/CTG Trinucleotide Repeat by TALEN in Yeast

Trinucleotide repeat expansions are responsible for more than two dozens severe neurological disorders in humans. A double-strand break between two short CAG/CTG trinucleotide repeats was formerly shown to induce a high frequency of repeat contractions in yeast. Here, using a dedicated TALEN, we show that induction of a double-strand break into a CAG/CTG trinucleotide repeat in heterozygous yea...

متن کامل

Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase

CAG/CTG repeat expansions cause over 13 neurological diseases that remain without a cure. Because longer tracts cause more severe phenotypes, contracting them may provide a therapeutic avenue. No currently known agent can specifically generate contractions. Using a GFP-based chromosomal reporter that monitors expansions and contractions in the same cell population, here we find that inducing do...

متن کامل

Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.

A quantitative genetic assay was developed to monitor alterations in tract lengths of trinucleotide repeat sequences in Saccharomyces cerevisiae. Insertion of (CAG)50 or (CTG)50 repeats into a promoter that drives expression of the reporter gene ADE8 results in loss of expression and white colony color. Contractions within the trinucleotide sequences to repeat lengths of 8 to 38 restore functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005